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Ashcroft empty core pseudopotentials and Ichimaru and Utsumi screening are used to 
calculate interatomic pair potentials which reproduce the measured entropies of some 
liquid and hot solid metals. It is found that the empty core radii vary rather continuously 
with volume from phase to phase. This variation can, however, be rather strong in some 
cases (e.g. Na, Mg) if not in others (e.g. Al). Such a possibility should be considered, 
therefore, whenever volume changes are significant and, in particular, across solid-liquid 
phase boundaries. 

In Na and Mg, the interatomic force appears to be at least semi-quantitatively 
given over the small region between the effective collision diameter in the liquid and the 
nearest neighbour distance in the solid; elsewhere, it is scarcely tested by the fitting 
exercise. In Al and Ge, the analysis is consistent with a loss (partial or total) of minimum 
of the pair potentials in the nearest neighbour regions. The importance of these regions 
for the solid state analyses is thus reduced and their quantitative accuracies cannot 
therefore be verified by the present study. 

Key words: empty core pseudopotentials, interatomic pair potentials, phase boundar- 
ies. 

1 INTRODUCTION 

It is fairly common practice to parametrise a bare electron-ion pseudo- 
potential using measured solid state quantities such as band gaps and 

* Permanent address: Department of Physics, University of Dhaka, Dhaka-2, Bangla- 

t Permanent address: Faculty of Integrated Arts and Sciences, Hiroshima University, 
desh. 

Hiroshima 730, Japan. 
- 

5 Permanent address: Department of Engineering, Niigata University, Niigata 950-21, 
Japan. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
0
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



22 S. M. M. RAHMAN et al. 

phonon spectra and apply it unchanged to the liquid. We have, recently, 
had occasion to query this procedure in the specific context of the 
interatomic forces and we present below some illustrative calculations 
from which a few general conclusions might be drawn. 

We consider simple metals only. In such cases, the effective Hamilto- 
nian for the ions is often viewed as the sum of two volume dependent 
parts, one being position independent and the other a pairwise contri- 
bution. We focus on the latter and take care to consider only properties 
not seriously affected by the former. We avoid, for example, the low 
wavenumber parts of the liquid state structure factors, where density 
fluctuations are important and, for the same reason, the compressional 
long wavelength modes in the solid state phonon spectra. Specifically, 
for liquids, we focus on the effective hard sphere packing fractions 
which describe the structure factors at and around the principal peaks, 
while for the solids we consider the Einstein temperatures and the 
elastic shear moduli. 

It is assumed that the reader is familiar with the general method’ of 
calculating interatomic potentials by pseudopotential theory and we 
remark only that we use the empty core Ashcroft’ electron-ion 
interaction and Ichimaru and Utsumi3 screening for this purpose. This 
is a procedure recently adopted by Hafner and Heine4. 

2 PARAMETER FllTlNG FOR Na A N D  M g  

We begin by considering two particularly simple metals and focus on a 
single property namely the measured’ entropy S per atom. 

For the (hot) solid, any value of the latter allows us to extract an 
Einstein temperature I9( T )  using the equation 

and B(T), in its turn, is related to the interatomic potential q ( r )  by6 

Here, M is the atomic mass and the R are the lattice sites relative to an 
atom at the origin. Using the observed volumes R(T) per atom, we can 
therefore fit the empty core radii r, to experiment at each volume 
considered and we show such dependences in Figure 1. 

In the liquid, it has been long recognised’ that hard sphere packing 
provides an appropriate lowest order description of structure factors 
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Figure 1 Empty core radius r, versus electron separation parameter rs = (352/4n~)''~. 

Here z is the valency (1 for Na, 2 for Mg). Selected Einstein temperatures fl and packing 
fractions q, describing the entropies in the two phases, are quoted. The points are 
obtained by matching Percus-Yevick hard sphere peak heights to those of some 
structure factors measured by Waseda'. 

(provided the low argument region is avoided). Likewise, the entropy 
per atom in this case can be described* in the hard sphere form 

S/kB = 2 + h[n(Mk, T/2nh2)3'2] - q(4 - 3q)/( 1 - q)' (3) 
Here, q is the packing fraction, given by q = na3/6R, where o is the 
effective hard sphere diameter. In general, the Gibbs-Bogoliubov 
method' can be used to determine a(T) for a given interatomic 
potential q(r)  but, in simple cases (such as the descriptions of Na and 
Mg to be given in this paper) where a principal minimum value qmin 
exists around the nearest neighbour position, the easily applied 
formula' g 7  

(4) 

suffices instead. Our procedure for the liquids, then, is to extract a's 
from (3) at the observed Q(T)'s and obtain, by pseudopotential theory, 
the re's which lead to these values. Such results are shown in Figure 1 
alongside their solid state counterparts. 

One might also expect r, to depend on the property fitted. To 
illustrate this point, we show, in Figure 1, some results obtained by 
fitting the principal peaks of the structure factors, observed by 

~ ( a )  - q m i n  x i!kB T 
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Waseda’, to those of the Percus-Yevick hard sphere solution”. In 
addition, we must also remember that experimental error will affect the 
result and, in this context, we mention that the Waseda work is only one 
of a number we could have selected. 

A perusal of Figure 1 shows that r ,  has volume dependence and that, 
notwithstanding the difficulties mentioned above, there is a discernible 
trend in its variation from one phase to the other. 

3 INTERATOMIC POTENTIAL TESTS FOR Na AND M g  

A given rc ,  at a specified volume, generates a complete pair potential. 
For example, the curves of Figure 2 correspond to the entropy fits of 
Figure 1 for the room temperature solids and the liquids at melting (the 
lowest point on each curve segment). The question now to be consi- 
dered is the degree to which each such potential, fitted as indicated, has 
been uniquely defined, in the above way, over all space. 

Figure 2 Pair potentials for Na and Mg. In each case the curves are shown for the solid 
at room temperature (solid line) and the liquid at melting (broken line). The nearest 
neighbour distances R ,  in the solids and the effective diameters u in the liquids are 
indicated. 

In the liquid cases, Eq. (4) applies. It is clear from this that only a 
small portion of the core is probed and even then it is only done in a 
crude way. Much of each q ( r )  curve is irrelevant, that part beyond the 
principal minimum being entirely so (to the extent that Eq. (4) can 
replace the full Gibbs-Bogoliubov procedure). 
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Table 1 
for Na and Mg (atomic units throughout) 

System N ,  R ,  103R I03T 

Calculated nearest neighbour data 

Na (bcc) 8 6.91 1.60 0.04 
Mg (hcp) 12 6.04 5.4 0.1 

N ,  is the number of nearest neighbours, 
R 1  is the nearest neighbour distance, R = 
cp”(R,) and T = R;’cp’(R,). 

In the solid cases, we calculate that only nearest neighbours# 
contribute in effect to Eq. (2) ,  which then becomes 

(3M/h2)(kBf?)2 = N , ( R  + 27’) ( 5 )  

Here, R = cp”(R,) and T = R ;  ‘cp‘(R1), where N ,  and R ,  are the nearest 
neighbour coordination numbers and distances (Table 1). Evidently, 
therefore, only the curvature around R,, itself near the potential 
minimum, is being fitted. The numerical data of the analysis are 
summarised in Table 1. 

One can, in fact, test the data of Table 1 somewhat further. In nearest 
neighbour approximation, the elastic shear constants can be written 
down as linear combinations of R and T and the coefficients for some 
simple cases are shown in Table 2. In this way, using Table 1, we 

Table 2 Coefficients of R and T in shear constant formulae 

Bcc Fcc Dia Hcp (ideal) 

R T R T  R T R  T 

fi1’3&cll + c12 + 2c3, - 4cI3) (not applicable to cubic cases) 2-*13 3 x 2-2/3 

calculate the results of Table 3. These are probably about as good as we 
are entitled to expect using such simple pseudopotential theory and 
vindicate the nearest neighbour description, particularly for Na. In the 
case of Mg, analysis of the observed data shows that they cannot be 
described in complete quantitative detail for any choices of R and T; 
nevertheless, the table suggests that the nearest neighbour approxima- 
tion is tenable at least semi-quantitatively, 

8 We suppose the hcp Mg to have an ideal cia ratio, 1.63, instead of the actual 1.62, 
and in this case take N, = 12. 
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26 S. M. M. RAHMAN et al. 

Table3 Elastic shear moduli (all in a.u.) 

c44 +(.I I - c ~ 2 )  b(ci 1 + ciz + 2C33 - 4c13) 

Na 0.140 (0.143) 0.009 (0.019) - 

Mg 0.461 (0.558) 0.563 (0.571) 0.666 (0.697) 

Calculated values are followed by observed data in parentheses. 

4 OTHER SYSTEMS: Al AND Ge 

We have considered two further systems, A1 and Ce, the interatomic 
potentials for which are shown in Figure 3. In these cases, the principal 
minimum has been largely lost and this raises questions, in particular, 
about the validity of the nearest neighbour force constant description 
for the solids. 

In the case of solid A], the Einstein temperature varies considerably 
(from 267 K at room temperature to 229 K at melting) yet rE,  obtained 
via Eq. (2), remains remarkably constant (Table 4) at about 1 . 1 4 ~ ~ .  On 
the liquid side of the transition we assume Eq. (4) can be applied in 
relation to the shallow minimum and find a packing fraction of q = 0.46 
(0.45) corresponds to rJa0 = 1.12 (1.09). It would thus seem that rc 
remains rather constant despite a 9 % volume increase on melting. 

8.0 9 .0  
2 . 0  
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5.0 6 .0  7.0 -- - 
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rlao 
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Figure 3 Pair potentials for Al and Ge. Description as in Figure 2 caption. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
0
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



INTERATOMIC FORCES IN METALS 21  

Table 4 r, versus r ,  for A1 and Ge 

Phase TIK rJa0 rc/ao 

A1 Fcc 298 2.07(3) 1.139 
Fcc 933 2.10(6) 1.145 
Liquid 943 2.16(5) 1.12* 

Liquid 1250 2.096 1.03;; 
Ge Dia 300 2.09 0.98 

* Fitted to '1 = 0.46. 
** Kahl and Hafner" fit. 

In contrast with the Na and Mg cases, however, the nearest neigh- 
bour approximation (Eq. ( 5 ) )  does not appear to be accurate. This is 
signalled by the fact that three sets of neighbours are needed in Eq. (2), 
the nearest neighbour result for f3 falling thereby from 306 K to 267 K. 
Analysis of the elastic shear constants, using Table 2 (fcc case), leads to 
the same conclusion; the observed c44 and S c l l  - clZ) yield R and T 
not reconcilable with 8. We must conclude that we are not subjecting 
the curve at the nearest neighbour position to detailed scrutiny. 

Finally, we considered Ge because Kahl and Hafner" have quite 
successfully described the liquid state structure factor in this case. Solid 
Ge, at room temperature, has just about the same density as liquid Ge 
at melting. (This is so because the normal solid state expansion on 
heating is nullified by a contraction on melting). It will be seen from 
Table 4 that the corresponding r ,  fits are also much the same. Once 
again, however, Eq. ( 5 )  is inadequate for describing 0, the nearest 
neighbour result falling from 254 K to 235 K on including the third 
shell in Eq. (2). Table 2, in fact, shows very directly that the Ge potential 
of Figure 3 is incompatible with a nearest neighbour description; 
according to Figure 3, T is negative and this implies instability to [l 101 
shear. Once again, it would seem that the analysis tells us little 
quantitatively about the potential at the nearest neighbour position. 

5 CONCLUSIONS 

As a result of the above analysis, there is some reason to believe that the 
shapes of the interatomic potentials for Na and Mg are semi-quantitati- 
vely known over a limited range (from slightly below (r to just beyond 
R ,  in Figure 1). The absolute values are, however, untested in this 
region (and we find it difficult to see how to do so convincingly). 
Outside these segments, the remainder of the curves remain untested. 
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In the cases of A1 and Ge, the solid state evidence points to the 
qualitative feature of loss (partial or total) of minimum in the nearest 
neighbour region. Mutatis mutandis, the shape in this region cannot be 
quantitatively tested by the above techniques. Furthermore, the abso- 
lute values within this region and all features outside remain untested. 

Finally, we return to the original impetus for this project. The results 
indicate that pseudopotential parameters can sometimes carry signifi- 
cant volume dependence. In particular, therefore, it is not safe practice 
to assume that parametrisations obtained in the solid state can be 
applied unchanged in the liquid, and vice versa. If, however, the volume 
dependence can be ascertained in one phase, there appears to be some 
evidence in favour of its extrapolation for usage in the other. 
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